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Shortest paths and load scaling in scale-free trees
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The average node-to-node distance of scale-free graphs depends logarithmidalthemumber of nodes,
while the probability distribution function of the distances may take various forms. Here we analyze these by
considering mean-field arguments and by mappingrikel case of the BaralsaAlbert model into a tree with
a depth-dependent branching ratio. This shows the origins of the average distance scaling and allows one to
demonstrate why the distribution approaches a Gaussian in the lintlafge. Theload, the number of the
shortest distance paths passing through any node, is discussed in the tree presentation.
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[. INTRODUCTION the argument is the empirical evidence from simulation re-
sults of a broader class of scale-free graph ensembles, where

Recently, many examples have been found of systema power-law growth of the diameter has been indeed identi-
whose innate topology is not homogenous and can rather Heed. The question of the viability of logarithmic scaling in
described in terms of a scale-free, random structure. Exreal-world networks is particularly essential, since it has an
amples range from the Internet to cellular metabolism netimpact on efficiency and percolation issuesmmunication
works. The interest of the physicists in this field stems fromover the Internet, spreading phenom¢ha,14], community
the fact that the behavior of many systems on such networkstructureq15,16)).
or graphschanges drastically and often attains characteristics Until recently, less attention has been paid toghebabil-
close-to but not quite like the mean-field limit. ity distribution of shortest path lengths, or sometimes re-

A scale-free graph consists of a set of nodes or verites ferred to as chemical distances in scale-free graphs, possibly
and bonds or edgds connecting the vertices to a structure. owing to the fact that it has been implicitly assumed that the
The essential measure of the scales or lack thereof is th@verage diameter is an adequate measure of distance proper-
connectivity or degree distribution of the nodésthe prob- ties in the networks. The particular form of the distribution
ability of any node to havé edges[one may distinguish function may have bearings on the performance of search
between directed and undirected graphs; in the former cassgorithms in scale-free grapii$7]. On the other hand, the
the incoming and outgoing PDFrobability distribution  distribution of shortest paths has been analytically calculated
functiong can differ]. If this probability P, follows a power-  for the small-world model, employing the underlying lattice
law behavior, a structure arises that does not have any intrirstructure/ 18] and arriving at a Gaussian-like distribution for
sic scale. The Internet is an example of sudh.ak™?, and large system sizes. Likewise, a model for deterministic scale-
several models have been designed that fit the same descripee graphs has been proposed and analyzed |&fedy
tion. Later on enhanced models have been devised to captunehere a Gaussian is again obtained in the asymptotic limit.
the characteristics of more elaborate phenomena, such as theln this paper we focus on a subset of scale-free graphs
tendency of clustering1—4]. described by the BarabaAlbert model[11], which in addi-

The models lead to evolving graphs that grow continu-tion are loopless rooted treefrom a topological point of
ously in time by the addition of new nodes, with only a view, i.e., them=1 case where one connects new nodes by
limited number of notable exceptions where the scale-fre@nly one link to the existing structure. By removing the re-
graph is generated by means of a Monte Carlo algor[filn ~ dundancy of interconnecting loops it is possible to consider
The degree distributioR, and average connectivity become the distance properties on a mean-field level, and also to
stationary in the thermodynamic limit, save for the tail of theanalyze “load” or “betweenness[20,21], the number of any
distribution, which is subject to finite-size cutoff effects shortest paths passing through vertices. The essential fact
[6,7]. A practically minded question in the same spirit is the here is that the hub of the tree, e.g., the node with the highest
growth mechanism of the Interngg]. connectivity for simplicity, transmits connections between all

It is a common feature of growing networks that theythe branches emanating from it. We show that a stochastic
spontaneously develop degree-degree correlations betwebranching process rooted in the preferential attachment rule
adjacent nodef9,10]. This is a manifestation of thprefer-  gives rise to the logarithmic scaling of the diameter and that
ential attachment[11] principle, where more connected the PDF of the minimal paths approaches a Gaussian.
nodes are to attract a larger proportion of new links as the Since throughout this text we are interested in tree struc-
network grows. One recent study hints that the correlatioriures, it is useful to overview their basic features. In the
between neighboring node connectivities is the mechanismontext of random networks, one often refers to R22] and
behind the logarithmic scaling of theetwork diameteor the  the derivation therein, which suggests that the diameter of
average shortest distance between two randomly chosen vegraphs grows logarithmically. Although the calculations
tices, with respect to the system siZ2]. The support for therein are performed for random graphs containing loops,
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the result obtained closely resembles thatdatanced Cay- separation from the root is them(l)=n(l —1)b(l — 1) with

ley treeswith uniform coordination number@xcept for the the condition than(0)=1. The actual form ob(l) can be
coordination number of the central node, which is different obtained by making use of the preferential attachment rule
According to this, the number of nodes separated from nodéor BA networks. According to this, the probability that a
zero byk nonrecurring steps goes @5 wherez is the coor-  newly introduced node will connect to any given set of nodes
dination number for the Cayley tree. It then follows simply is proportional to the cumulative connectivity of the set in
from the sum of a geometric series that both the longestiuestion. Thus, the number of nodes on layerl changes
distance as well as the average distance between nodescording to the following rate equation, due to the addition

should behave ak~In N. of a new node:
It is obvious that trees have unique shortest paths between
any two nodes in the sense that without traversing the same
edge twice it is not possible to find an alternate minimal N
route(unlike in unweighted graphs with loops, where there is
usually more than one minimal pattwe can then define one since the right-hand side describes the attachment probability
of the nodes as theot of the tree and unambiguously ar- to layerl, whereN is the number of nodes in the system and
range all the other nodes intayersdepending on their mini- 2N is the normalization factor for the connectivity. Writing
mal distance to the root. Finding the shortest path betweeR(l +1)=n(l)b(l), expanding the derivation, and dividing
two chosen nodes is nothing but identifying the deepest comPy n(l)b(l) give
mon node along the paths leading from the root to the source

on(l+1) 1
N anLP(h+1Ind), Y

and target vertices and then connecting the two nodes via this iﬂb(U_i(i_ 1 ) @
common fork. Notice that the choice of the root here is b(l) N  2N\b(l) b(l—-1)/
slightly arbitrary; one would prefer to use balanced trees.

We study scale-free BaragiaAlbert (BA) trees[11], start- If we substituteB(N,l)=1/b(l) by explicitly indicating

ing with a single vertex. Then in each time step we add dhe size dependence dhand assume th&(N,I) is a slowly
new vertex withonly oneoutgoing edge. The other end of varying function,

the edge is connected to one of the nodes already present in

the system with a connection probability proportional to the dInB(N,I) 1 4B(N,I)
connectivity or degree of a particular node. All edges are - N 2N 4l
thought of as bidirectional and having the same weight,

namely 1. As a slight modification to the original model, the It is straightforward to expect a solution in the decom-
connection symmetry of the first two nodes is broken byposed form ofB(N,l)=B,(1)/Bn(N),

introducing a “virtual” edge to the very first vertex, which

only gives preference for this node over the second one when dInBy(N) 1 1 9B

it comes to the subsequent addition of further nodes. This N ~oN By(N)  al )
way, we can automatically identify the most connected node

in the network and call it its root. To have a balanced treeand since the left-hand side is a function of only
one needs every subtree of the root to have the same numbg;  B,(1)=2al with a constanix. Finally, we getBy(N)

of nodes in the configurational average. This is only attained=  In N and

when the root is the most connected node, since the BA

model ensures that the order of the nodes in terms of con- 1

nectivity does not change in the course of addition of new b(l)= 27 ®
nodes and is fully determined by the time of introduction of

a node. This relation does not apply to the rodt0) for obvious
reasons. Equatiofb) also implies that the number of nodes
Il. MEAN-FIELD APPROACH with a given distance to the rooi(l) keeps growing with
until b(l) drops below 1 and then starts to decrease, as the
To begin with, we will investigate the shortest path distri- bottom of the tree is approached{ 1) This is in strong
bution in a mean-field model of a tree network, between the:ontrast to the formal prediction of a constant branching for
root of the tree and all the other nodes. This argument E)(anyrandom grap]ﬁzz], which would result in a monotonous

tends also tayeneral graphsn the case that the new nodes exponential growth, as would be the case in usual Cayley
added(e.g.,m>1 Barabai-Albert network$ do not cause a trees.

significant amount of shortcuts between already existing
nodes.

Let us consider a uniform branching process for each of
the layers in the tree, so that every node on a certain layer Using the recursion relatiom(l)=n(l—1)b(I—1) for
has the same number of offsprings to produce the next layehe number of nodes on a given level, we can give an esti-
beneath; it shall amount tb(l) for layer| for short. This mate for the shortest path distribution function with the
way the original stochastic model is approximated by a desource of the paths at the root of the tree. Instead of(Bg.
terministic grapi{19,23. The number of nodes(l) with a  we take now the more general form bfl)=(A/l)* and

. (3

IIl. DISTANCE SCALING
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100 : : : : : sum ofn(l) over all layers should return the total number of
nodes in the systenN. Again, we approximate the sum with
an integral,

130} "
10 o b(0) [=(Ae|*
N=2 n(h= [ n(x)dx= —| dx
=1 1 e Jo | X
w— 41200 2

10 b(0) (= ,, (x—A) b(0) 27A

~ J’ e exg — dx~ et/ —,
e Jo 2A/\ el A
10" (8)
where we assumed thdt is large enough so that we can
1 neglect the correction of the error function to the Gaussian
10 . : . . . integral. We should also be aware thatas a finite cutoff
200 250 300 350 400 450 500 because of the bounded depth of the tree—yet, the quickly
X vanishingn(l) makes it possible to taleto infinity. Finally,

FIG. 1. A Gaussian fit for the functiofi(x)=(C/x)* with C f(x)—~1 asx—0 so that the integrand is bounded every-

=300e. A few points of the Gaussian are represented by the dotswhere'

The difference is only noticeable at the tails of the functions. The ~Recall now that the degree of a node in BA networks

inset shows how the quadratic error of the two functignsrmal- ~ 9rows with the power ofN, b(0)~N* [9]. Apart from

ized for areappears to be a decreasing power law with increasing?(0), theonly term on the right-hand side of E¢g) that

C. may contribute to the overall linear growth N is e*,
which increases much faster thaf\, so the latter can be

approximate the sum with an integral in the following ex- taken a constant. The consistency condition with the left-

pression: hand side requires thaf*~N*~# should hold, and thus
1-1 I-1 1_B
n(Hh=n0)]] b(i)zb(O)exp[ln > b(i)} A= ——InN+const 9
=0 i=1
_ -1 Disregarding the constant, we end up with a very similar
- (-1 _
~b(0)AN )ex;{ )\L deX) but more general expression as that of Bj.for b(l),
A(I-1) InN\*
:b(?)(lA_el) ©) b(I)=(v | ) with B+w=1. (10
o =

Gaussian in the largh- limit as A~InN goes to infinity, ~Pranching process decaying as a power law as a function of

f(x)=

very large network has been used. In order to draw furtheP€ctivity, the relation(10) should necessarily be satisfied.
conclusions, we will determine the parameters of the Gausd¥ot surprisingly, it is true in the case of BA trees, whefe
ian, which give a best fit ta(1). For the sake of simplicity, = 1/2 and according to E(S), v=1/2 and\ =1. One should
let us now consider the function of the forifix)=(C/x)**,  note that in the process of constructing the mapping we rely
on the fact that the number of nodes in a layer depends only
C\ Mx (X— )2 on theaverage branching ratio @d); the fluctuations in the
_) ~ Rexr{ - _ (7)  degrees of nodes are omitted. For this reason the degree dis-
X 20° tribution exponent-3 is not present in the tree representa-
tion.

We first match the extremal point 6fto the mean of the The node-to-node distances in the mean-field model are
Gaussian, resulting i =C/e. The maximum value is thus calculated as follows. We traverse each node of the tree and
R=exp(C\e); the standard deviatioor can be obtained by enumerate the routes with certain lengths that start at or go
the requirement that the derivative functions foind the  through this node and have both of their ends in the subtree
Gaussian be the same in the vicinity @fup to first order, of the node. Practically speaking, we can think of this node
giving o= C/(\e). Using the parameters acquired this as the root for its subtree and perform the same calculations
way, we can find a very good approximationfia), which  as we would do for the “global root” of the tree. If we
is almost identical to that of a least-square fit. denote byn®(l) the number of possible paths going out to

Furthermore, additional information can be gained if wethe subtree of a node on levelthat have length and one
look into the normalization conditions far(l). Trivially, the  end fixed at the node on levsl|
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-1
n<5>(|)=_f_[0 b(s+i). (12)

Now letr (1) be the number of all routes that gwough
or end at a particular node on leweand have a length df

2
-1 /y(s) n® (i) nO1—i) £
r(S)(|):n(s)(l)-|—®[b(5)_1]i:1 2 ) b(s) b(s) 3
b(s)—1
=n®(1)+0O[b(s)—1] %(s)
-1
X > niHn®(1—i). 12
-1 |

The second term in the sum has contributiorr ®(I) only
when there are branches left going out from a node, in aver- F|G. 2. The average number of branches per node normalized
age whenb(s)=1. The number of paths with a specific with the logarithm of the system size, represented vs the minimal
length in the whole system is therefore distance of the nodes from the root with maximum connectivity for
the BA model. A power-law fit has been performed in a window
L indicated by the heavy line, giving(l)/In N=0.43 ~°%99% The ex-
r(l)= 2 rn(s), (13 ponent is very close te- 1. The inset shows(l) plotted against the
s=0 normalized minimal distance. The systems range frorh th010°
nodes in size with logarithmic increments. The number of iterations
wheren(s) is, as defined earlier in Eq6), the number of  for the systems go from 2Go 100 depending on the si2é
nodes on a given leved . ] o
The Barabai-Albert model allows for more rigorous deri- ~ From the inset of Fig. 2, it is also apparent that the cutoff
vations of the relation fon(l). Mathematicians often referto L(N) is a little over the value of IN, by a factor of about
the tree interpretation of the model ascursive treesand ~ 1.3. On the other hand, the droplafl) atL(N) is measured
thus exact results have been obtained for both the distand@ be either an exponential or a power law with a very large
distribution and the diameter of the trefgl—26. Bollobss ~ €xponent. The mean-field prediction for the maximum of the
and Riordan give a general proof for the diameter scaling ophortest path lengthl.(N), can be obtained by equating
scale-free BA graphg27]. The mapping to Cayley trees also N(L) =1 in Eq.(6) and using the Gaussian approximation of
resembles the work of Krapivsky and Redner, who arrive at &9. (7). The solution up to first order in N is thatL(N)
closed recursive analytical form for(1), in a more general ~[(1++2/2)]InN, which again is in reasonable agreement
context than that of scale-free treg28]. It also resembles With the mean-field argument.
Cayley models of Internet trace roufe9] by Caldarelli and The derived quantitiea(l)/N and the node-to-node dis-
co-workers. tance distribution is shown in Fig. 3 for two distinct cases.
(1) The root-to-node and node-to-node shortest path dis-
tribution is measured in an ensemble of random BA trees
using simulations. Instead of every possible pair, the node-
Numerical simulations of BA scale-free trees fully con- to-node distances are measured only between a large but fi-
firm the inferences drawn in the preceding section. Most im-ite number of randomly selected vertex pairs, for practical
portant of all, the average number of branches per node onrgasons.
given level is shown in Fig. 2. The numerical parameters of (2) Both distribution functions are estimated by utilizing
the power-law fit conform with the mean-field values: thethe mean-field tree mapping, using the asymptotic form of
exponent of the decay is almost exacthl, and the prefac- EQ. (14) for b(l) with a cutoff atL=1.2InN.
tor of the logarithm with 0.43 is also close to that of the Itis to be seen that a very good correspondence is found
predicted value of 1/2. It is also worth noting that if we between the root-node distribution functions, but the overall
rescale the distance variable by the logarithm of the systerfwo-point PDF’s are sensibly close as well.
size, we can attain a data collapse with a very good accuracy. While it has been relatively easy to derive analytical re-

This means that for BA trees in practibél) can be approxi- Sults for the root-node distances in the mean-field trees, Eq.
mated as (13) and the quantities it is constructed of turn out to be too

complex to handle without numerics. The formulds)—
0.43InN (13) above are used to calculate the approximate values of
—F if I=L(N), the node-to-node path length distribution in the mean-field
b(l)= I 14 trees using the expression of E44) instead of the analyti-
~0, otherwise. cal form of Eq.(5), so as to better represent the random BA

IV. COMPARISON WITH SIMULATIONS
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FIG. 3. Root-to-nodgleft) and node-to-nodéright) distance
distributions with circles(BA mode) and their predicted values
with squares. The prediction is based on Ed4)—(13). Trees of

FIG. 4. The diameter and mean depth of networks of different
sizes, divided by the logarithm of their size. Circles represent the
mean of node-to-node distances, while squares represent the mean
'Pgot-to-node distances. Both are apparently proportional 14, In
and the prefactors of 0.5 and~1 are in very good agreement with
Their respective analytical values.

dashed lines show the least-square fits with the function(l
—1)]'~* to the measured data points. The constant for root-to-nod
distances i€, =15.7 and for node-to-node distandgs=33.2.C,

is in a very good correspondence with the analytical valu€ of

—0.4%InN=16.2 andC,~2C, . A(l)=~d(I)N. Thus one may investigate the dependence of

the load on the levelor depth of the tree|. Ford(l) in the

trees. It is reassuring that the generic form of the node-tofne"’m'fIEId picture one has that

node distance PDF also follows & {/x)* function, only L
with a differentC’ constant from that o€ for the root-node 2 n(i)
distance§Eqgs.(6) and (7)]; see Fig. 3. The diameter of the d(l)= i=l+1 (16
trees relative to the logarithm of the system size can be seen nil)
on Fig. 4.(I)~ InN, or, in other words, twice the mean of
root-to-node distances. This is somewhat expected as tHnd for the layer immediately below
main contribution to the node-to-node paths arises from L
passing through the root, for large graphs. It leads to a E .
convolution-type distributior{from the two “legs”). It can 51, n(i) d(hn()—n(l+1)
easily be seen that the diameter cannot exceed twice the d(l+1)= N+ 1) = n(+1)
depth of the tree, which gives rise to a logarithmic growth in
any case. d(l) d(l)
b by 7

V. THE “LOAD” ON TREES
where we also used the recursion relation ¢t +1). Fi-

On a hierarchical structure the total number of m|n|mumna”y’ the load changes for the layer underneath as

paths going through a nodghe “load”) can be divided into
two contributions. First, those paths that connect nodes in d(l) Al

separate sub-branches of the node to each other, and, second, A(l+1)=d(I+1)N= WN EYOR (18
those connecting the nodes belonging to the branches to the

rest of the tree. Catli(1) the number of the descendants of a sjnce the load\ (1) is the same for each of the nodes on a

node on level. In other wordsd(l) is the size of the subtree particular levell, the distance-load distribution is directly

for the node. Then the load can be written simply as given by the normalizeah-A function, thus hiding the im-
b(1)\Td(1)]? plicit dependence oh Considering that
A<l>=( ) ) W} +d(D[N—=d(D], (15 A
A(l+1)= m,
where the last term counts the connections towards the hub.
For the particular example we are concerned with, it is n(l+1)=n()b(l), (19

easy to see that the latter term dominatds>d(l)] and,
moreover, that a good approximation is given by just simplyA (I +1)n(l+1)=A(l)n(l)=const, and therefore
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FIG. 5. Load distribution for mean-field trees modeling BA net- FKT" 6. Betweenness as a fu_nction of the des_cendants fqr every
works. The probabilityP is proportional ton, the number of nodes node in the netwqu. Trees of size“lare ta}ken with 100 regllza-
on the levels of the tree. The load on the root has not been showet ns. The root which descendants are defined down from is always
since it does not average. The inset shows the load distribution fo € ini_tial node. The prediction of Eq21) is represented by the
a usual Cayley tree with a coordination numtzer2. The bold solid line.

lines indicate power-law fits, which give exponents-00.99 and . .
—1 for the BA and the Cayley trees, respectively. The mean-field© anY other node; if the source is among the descendants, we

tree is a mapping of a random BA tree with!d@odes. haved(N—1—d+1) ones going through; if the source is
any other node from the network, we havd{1—d)(d

const +1). A fourth contribution, coming from paths passing
n=—-—. (20) through the node but having both ends in the descendant tree,
A has been neglected. They add up to an estimated between-

o nessK of
We then expect to see that the load is inversely propor-

tional to the number of nodes on the levels, which is indeed K(d)~2N—1+2(N—1)d—2d?. (21)
the case according to Fig. 5. The same result holds for nor-
mal Cayley trees from Eq15). Here it is to be seen that for smalis the linear term domi-
Note that we have to use mean-field trees which wouldhates, just as in our previous load calculation; Fig. 6 justifies
correspond to random networks with a large number ofour estimations.
nodes so that the number of levels is of the order of ten. For The betweenness probability distributiBiK) taken over
the load distribution we consider only levels for whio{l) all nodes in the network can then be concluded to asymptoti-
=1 because otherwise subtrees do not exist in the averagally follow a power-law decay with a universal exponent of
sense. It is surprising that the load distribution exponent does 2. This is sinceK is linear in the number of descendadts
not depend on the actual form @f(l), being universally and, moreover, that the PDF dfscales universally with an
—1 [Eg. (19)]. Indeed,the exponent of the distance-load exponent of—2 for supercritical tree$30]. Strictly speak-
PDF is independent of the choice of the node that all theng, the conclusions here are only true for the supercritical
distances are taken relative.to part of the tree, i.e., whet®(l)>1. The subcritical leaves of
Another common way of defining the importance of thethe tree have an increasingly smaller number of descendants,
nodes in terms of shortest paths passing through them is thbough, which drops exponentially with each new layer, and
one called betweenness, favorable for its algorithmic feasiit can be verified that the descendant PDF decay exponent is
bility and simplicity. Newman presents a breadth first searctindeed above 2 if only this part of the tree is considered.
algorithm for efficient calculation of the betweenness ofNevertheless, Fig. 7 shows that both the descendant PDF and
nodes on random graph21]. The only notable difference to the load PDF are accurately described by inverse square
Eq. (15 comes from the fact that the betweenness also adunctions. A scaling of the load distribution has been experi-
counts for paths that originate from the nodes themselvesnentally found on other scale-free networks as VD],
which nevertheless amounts only to a constant system sizeanly with a slightly different universal exponent of about 2.2.
We will calculate the betweenness on the trees, now fo- A further, practically more far-reaching observation is that
cusing on the probability distribution of the load. An estima-the average betweenness as measured as a function of the
tion can be given for a node by considering the contributiongocally known node degree grows as a power law of the
to it, and by separating the network to a descendants padegree with an exponent of about 1Fg. 8. A mean-field
with d nodes in the branches and all the rest Witk 1—d approach can be used to estimate the exponent, though, if we
nodes. The node being the source, we hid\&hortest paths consider that the preferential attachment principle for large
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FIG. 7. Betweenness PDF for a system of h@des. The expo-
nent of the power law shown is 1.99. The inset displays the loga-
rithmically binned PDF of the descendants for systems with 10
nodes. Its power-law exponent is1.99 as well.

FIG. 8. Average betweenness for nodes with a particular degree,
taken over 100 realizations of networks wit*Itbdes. The fit of a
power law indicates an exponent of about 1.78. The inset shows the
average number of descendants vs the degree for systems With 10
nodes, for which a power-law fit gives{(k) ~ k>

degrees gives rise to a descendant-degree scaling of
~kY8 (B=1/2), which is the inverted relation for the time . hm of th K si d th i f £ th
evolution of the degree of a parent nd@. In this particular rithm of the network size and the asymptotic form of the
case, time is measured as the size of the node’s subtree.q&Stance distribution f_unctlons follows immediately. In_ other
substitution of the latter into the linear load equation would"VOrds: we can examine the slow convergence of this func-

suggest an exponent of 2; the deviation from it may comd!on 1o the I|m|t|n_g Gaus&_an_ forr_n for infinite system sizes.
Given an effective description in terms of a tree plus a

from the rather restricted range of the degree that the relab | . ;

tively small system sizes allow. ranching process, further |'nformat|on can be found, e.g.,
one may consider the scaling of the number of shortest-

distance pathgload or betweennessNonuniform critical

trees could perhaps be constructed in a self-organized fash-

In this paper, we have mapped scale-free BasaBibert 10N, as is possible for the statistically uniform c4se].
trees to a deterministic model of a rooted tree with a uniform  One should note the close relation of the Cayley represen-
branching process on each layer of the tree. This idea rdation to minimal spanning treed1ST) on scale-fregran-
sembles studies on the Internet structi#@] and the struc- dom) networks; for them=1 networks these two coincide.
ture of branched cracks, where an inverse relation of thdhis makes it an interesting prospect to study the load and

VI. CONCLUSIONS

branching to distance has been obsef&y. distance properties of MST's in other scale-free networks.
Simulations show that the distribution of the number of
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