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Shortest paths and load scaling in scale-free trees
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The average node-to-node distance of scale-free graphs depends logarithmically onN, the number of nodes,
while the probability distribution function of the distances may take various forms. Here we analyze these by
considering mean-field arguments and by mapping them51 case of the Baraba´si-Albert model into a tree with
a depth-dependent branching ratio. This shows the origins of the average distance scaling and allows one to
demonstrate why the distribution approaches a Gaussian in the limit ofN large. Theload, the number of the
shortest distance paths passing through any node, is discussed in the tree presentation.
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I. INTRODUCTION

Recently, many examples have been found of syste
whose innate topology is not homogenous and can rathe
described in terms of a scale-free, random structure.
amples range from the Internet to cellular metabolism n
works. The interest of the physicists in this field stems fro
the fact that the behavior of many systems on such netw
or graphschanges drastically and often attains characteris
close-to but not quite like the mean-field limit.

A scale-free graph consists of a set of nodes or verticeV
and bonds or edgesE connecting the vertices to a structur
The essential measure of the scales or lack thereof is
connectivity or degree distribution of the nodesV: the prob-
ability of any node to havek edges@one may distinguish
between directed and undirected graphs; in the former c
the incoming and outgoing PDF’s~probability distribution
functions! can differ#. If this probabilityPk follows a power-
law behavior, a structure arises that does not have any in
sic scale. The Internet is an example of such aPk;k2g, and
several models have been designed that fit the same des
tion. Later on enhanced models have been devised to cap
the characteristics of more elaborate phenomena, such a
tendency of clustering@1–4#.

The models lead to evolving graphs that grow contin
ously in time by the addition of new nodes, with only
limited number of notable exceptions where the scale-f
graph is generated by means of a Monte Carlo algorithm@5#.
The degree distributionPk and average connectivity becom
stationary in the thermodynamic limit, save for the tail of t
distribution, which is subject to finite-size cutoff effec
@6,7#. A practically minded question in the same spirit is t
growth mechanism of the Internet@8#.

It is a common feature of growing networks that th
spontaneously develop degree-degree correlations betw
adjacent nodes@9,10#. This is a manifestation of theprefer-
ential attachment@11# principle, where more connecte
nodes are to attract a larger proportion of new links as
network grows. One recent study hints that the correlat
between neighboring node connectivities is the mechan
behind the logarithmic scaling of thenetwork diameteror the
average shortest distance between two randomly chosen
tices, with respect to the system size@12#. The support for
1063-651X/2002/66~2!/026101~8!/$20.00 66 0261
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the argument is the empirical evidence from simulation
sults of a broader class of scale-free graph ensembles, w
a power-law growth of the diameter has been indeed ide
fied. The question of the viability of logarithmic scaling i
real-world networks is particularly essential, since it has
impact on efficiency and percolation issues~communication
over the Internet, spreading phenomena@13,14#, community
structures@15,16#!.

Until recently, less attention has been paid to theprobabil-
ity distribution of shortest path lengths, or sometimes r
ferred to as chemical distances in scale-free graphs, pos
owing to the fact that it has been implicitly assumed that
average diameter is an adequate measure of distance pr
ties in the networks. The particular form of the distributio
function may have bearings on the performance of sea
algorithms in scale-free graphs@17#. On the other hand, the
distribution of shortest paths has been analytically calcula
for the small-world model, employing the underlying lattic
structure@18# and arriving at a Gaussian-like distribution fo
large system sizes. Likewise, a model for deterministic sc
free graphs has been proposed and analyzed lately@19#,
where a Gaussian is again obtained in the asymptotic lim

In this paper we focus on a subset of scale-free gra
described by the Baraba´si-Albert model@11#, which in addi-
tion are loopless rooted treesfrom a topological point of
view, i.e., them51 case where one connects new nodes
only one link to the existing structure. By removing the r
dundancy of interconnecting loops it is possible to consi
the distance properties on a mean-field level, and also
analyze ‘‘load’’ or ‘‘betweenness’’@20,21#, the number of any
shortest paths passing through vertices. The essential
here is that the hub of the tree, e.g., the node with the hig
connectivity for simplicity, transmits connections between
the branches emanating from it. We show that a stocha
branching process rooted in the preferential attachment
gives rise to the logarithmic scaling of the diameter and t
the PDF of the minimal paths approaches a Gaussian.

Since throughout this text we are interested in tree str
tures, it is useful to overview their basic features. In t
context of random networks, one often refers to Ref.@22# and
the derivation therein, which suggests that the diamete
graphs grows logarithmically. Although the calculatio
therein are performed for random graphs containing loo
©2002 The American Physical Society01-1
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the result obtained closely resembles that forbalanced Cay-
ley treeswith uniform coordination numbers~except for the
coordination number of the central node, which is differen!.
According to this, the number of nodes separated from n
zero byk nonrecurring steps goes aszk, wherez is the coor-
dination number for the Cayley tree. It then follows simp
from the sum of a geometric series that both the long
distance as well as the average distance between n
should behave asl̄ ; ln N.

It is obvious that trees have unique shortest paths betw
any two nodes in the sense that without traversing the s
edge twice it is not possible to find an alternate minim
route~unlike in unweighted graphs with loops, where there
usually more than one minimal path!. We can then define on
of the nodes as theroot of the tree and unambiguously a
range all the other nodes intolayersdepending on their mini-
mal distance to the root. Finding the shortest path betw
two chosen nodes is nothing but identifying the deepest c
mon node along the paths leading from the root to the sou
and target vertices and then connecting the two nodes via
common fork. Notice that the choice of the root here
slightly arbitrary; one would prefer to use balanced trees

We study scale-free Baraba´si-Albert ~BA! trees@11#, start-
ing with a single vertex. Then in each time step we ad
new vertex withonly oneoutgoing edge. The other end o
the edge is connected to one of the nodes already prese
the system with a connection probability proportional to t
connectivity or degree of a particular node. All edges
thought of as bidirectional and having the same weig
namely 1. As a slight modification to the original model, t
connection symmetry of the first two nodes is broken
introducing a ‘‘virtual’’ edge to the very first vertex, whic
only gives preference for this node over the second one w
it comes to the subsequent addition of further nodes. T
way, we can automatically identify the most connected no
in the network and call it its root. To have a balanced t
one needs every subtree of the root to have the same nu
of nodes in the configurational average. This is only attain
when the root is the most connected node, since the
model ensures that the order of the nodes in terms of c
nectivity does not change in the course of addition of n
nodes and is fully determined by the time of introduction
a node.

II. MEAN-FIELD APPROACH

To begin with, we will investigate the shortest path dist
bution in a mean-field model of a tree network, between
root of the tree and all the other nodes. This argument
tends also togeneral graphsin the case that the new node
added~e.g.,m.1 Baraba´si-Albert networks! do not cause a
significant amount of shortcuts between already exist
nodes.

Let us consider a uniform branching process for each
the layers in the tree, so that every node on a certain la
has the same number of offsprings to produce the next la
beneath; it shall amount tob( l ) for layer l for short. This
way the original stochastic model is approximated by a
terministic graph@19,23#. The number of nodesn( l ) with a
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separationl from the root is thenn( l )5n( l 21)b( l 21) with
the condition thatn(0)51. The actual form ofb( l ) can be
obtained by making use of the preferential attachment r
for BA networks. According to this, the probability that
newly introduced node will connect to any given set of nod
is proportional to the cumulative connectivity of the set
question. Thus, the number of nodes on layerl 11 changes
according to the following rate equation, due to the addit
of a new node:

]n~ l 11!

]N
5

1

2N
@b~ l !11#n~ l !, ~1!

since the right-hand side describes the attachment probab
to layer l, whereN is the number of nodes in the system a
2N is the normalization factor for the connectivity. Writin
n( l 11)5n( l )b( l ), expanding the derivation, and dividin
by n( l )b( l ) give

1

b~ l !

]b~ l !

]N
5

1

2N S 1

b~ l !
2

1

b~ l 21! D . ~2!

If we substituteB(N,l )51/b( l ) by explicitly indicating
the size dependence onN and assume thatB(N,l ) is a slowly
varying function,

2
] ln B~N,l !

]N
'

1

2N

]B~N,l !

] l
. ~3!

It is straightforward to expect a solution in the decom
posed form ofB(N,l )5Bl( l )/BN(N),

] ln BN~N!

]N
'

1

2N

1

BN~N!

]Bl~ l !

] l
, ~4!

and since the left-hand side is a function of on
N, Bl( l )52a l with a constanta. Finally, we getBN(N)
5a ln N and

b~ l !5
1

2

ln N

l
. ~5!

This relation does not apply to the root (l 50) for obvious
reasons. Equation~5! also implies that the number of node
with a given distance to the rootn( l ) keeps growing withl
until b( l ) drops below 1 and then starts to decrease, as
bottom of the tree is approached (n!1). This is in strong
contrast to the formal prediction of a constant branching
any random graph@22#, which would result in a monotonou
exponential growth, as would be the case in usual Cay
trees.

III. DISTANCE SCALING

Using the recursion relationn( l )5n( l 21)b( l 21) for
the number of nodes on a given level, we can give an e
mate for the shortest path distribution function with t
source of the paths at the root of the tree. Instead of Eq.~5!,
we take now the more general form ofb( l )5(A/ l )l and
1-2
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SHORTEST PATHS AND LOAD SCALING IN SCALE- . . . PHYSICAL REVIEW E 66, 026101 ~2002!
approximate the sum with an integral in the following e
pression:

n~ l !5n~0!)
i 50

l 21

b~ i !5b~0!expF ln (
i 51

l 21

b~ i !G
'b~0!Al( l 21)expS 2lE

1

l 21

ln xdxD
5

b~0!

el S Ae

l 21D l( l 21)

. ~6!

The result above forn( l ) approaches a non-normalize
Gaussian in the large-N limit as A; ln N goes to infinity,
which can be seen from Fig. 1, where aC corresponding to a
very large network has been used. In order to draw furt
conclusions, we will determine the parameters of the Gau
ian, which give a best fit ton( l ). For the sake of simplicity,
let us now consider the function of the formf (x)5(C/x)lx,

f ~x!5S C

x D lx

'R expF2
~x2m!2

2s2 G . ~7!

We first match the extremal point off to the mean of the
Gaussian, resulting inm5C/e. The maximum value is thus
R5exp(Cl/e); the standard deviations can be obtained by
the requirement that the derivative functions off and the
Gaussian be the same in the vicinity ofm up to first order,
giving s5AC/(le). Using the parameters acquired th
way, we can find a very good approximation tof (x), which
is almost identical to that of a least-square fit.

Furthermore, additional information can be gained if w
look into the normalization conditions forn( l ). Trivially, the

FIG. 1. A Gaussian fit for the functionf (x)5(C/x)x with C
5300e. A few points of the Gaussian are represented by the d
The difference is only noticeable at the tails of the functions. T
inset shows how the quadratic error of the two functions~normal-
ized for area! appears to be a decreasing power law with increas
C.
02610
r
s-

sum ofn( l ) over all layers should return the total number
nodes in the system,N. Again, we approximate the sum wit
an integral,

N5(
l 51

`

n~ l !'E
1

`

n~x!dx5
b~0!

el E
0

`S Ae

x D lx

dx

'
b~0!

el E
0

`

eAl expF2
~x2A!2

2A/l Gdx'
b~0!

el
eAlA2pA

l
,

~8!

where we assumed thatA is large enough so that we ca
neglect the correction of the error function to the Gauss
integral. We should also be aware thatl has a finite cutoff
because of the bounded depth of the tree—yet, the quic
vanishingn( l ) makes it possible to takel to infinity. Finally,
f (x)→1 as x→0 so that the integrand is bounded ever
where.

Recall now that the degree of a node in BA networ
grows with the power ofN, b(0);Nb @9#. Apart from
b(0), the only term on the right-hand side of Eq.~8! that
may contribute to the overall linear growth inN is eAl,
which increases much faster thanAA, so the latter can be
taken a constant. The consistency condition with the le
hand side requires thateAl;N12b should hold, and thus

A5
12b

l
ln N1const. ~9!

Disregarding the constant, we end up with a very simi
but more general expression as that of Eq.~5! for b( l ),

b~ l !5S y ln N

l D l

with b1yl51. ~10!

This implies that if a scale-free tree is characterized b
branching process decaying as a power law as a functio
the distance from a suitable root node with the highest c
nectivity, the relation~10! should necessarily be satisfie
Not surprisingly, it is true in the case of BA trees, whereb
51/2 and according to Eq.~5!, y51/2 andl51. One should
note that in the process of constructing the mapping we
on the fact that the number of nodes in a layer depends o
on theaverage branching ratio b( l ); the fluctuations in the
degrees of nodes are omitted. For this reason the degree
tribution exponent23 is not present in the tree represen
tion.

The node-to-node distances in the mean-field model
calculated as follows. We traverse each node of the tree
enumerate the routes with certain lengths that start at o
through this node and have both of their ends in the sub
of the node. Practically speaking, we can think of this no
as the root for its subtree and perform the same calculat
as we would do for the ‘‘global root’’ of the tree. If we
denote byn(s)( l ) the number of possible paths going out
the subtree of a node on levels that have lengthl and one
end fixed at the node on levels,

s.
e

g

1-3
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n(s)~ l !5)
i 50

l 21

b~s1 i !. ~11!

Now let r (s)( l ) be the number of all routes that gothrough
or end at a particular node on levels and have a length ofl,

r (s)~ l !5n(s)~ l !1Q@b~s!21#(
i 51

l 21 S b~s!

2 D n(s)~ i !

b~s!

n(s)~ l 2 i !

b~s!

5n(s)~ l !1Q@b~s!21#
b~s!21

2b~s!

3(
i 51

l 21

n(s)~ i !n(s)~ l 2 i !. ~12!

The second term in the sum has contribution tor (s)( l ) only
when there are branches left going out from a node, in a
age whenb(s)>1. The number of paths with a specifi
length in the whole system is therefore

r ~ l !5(
s50

L

r (s)~ l !n~s!, ~13!

wheren(s) is, as defined earlier in Eq.~6!, the number of
nodes on a given levels.

The Baraba´si-Albert model allows for more rigorous der
vations of the relation forn( l ). Mathematicians often refer to
the tree interpretation of the model asrecursive trees, and
thus exact results have been obtained for both the dista
distribution and the diameter of the trees@24–26#. Bollobás
and Riordan give a general proof for the diameter scaling
scale-free BA graphs@27#. The mapping to Cayley trees als
resembles the work of Krapivsky and Redner, who arrive
closed recursive analytical form forn( l ), in a more genera
context than that of scale-free trees@28#. It also resembles
Cayley models of Internet trace routes@29# by Caldarelli and
co-workers.

IV. COMPARISON WITH SIMULATIONS

Numerical simulations of BA scale-free trees fully co
firm the inferences drawn in the preceding section. Most
portant of all, the average number of branches per node
given level is shown in Fig. 2. The numerical parameters
the power-law fit conform with the mean-field values: t
exponent of the decay is almost exactly21, and the prefac-
tor of the logarithm with 0.43 is also close to that of th
predicted value of 1/2. It is also worth noting that if w
rescale the distance variable by the logarithm of the sys
size, we can attain a data collapse with a very good accur
This means that for BA trees in practiceb( l ) can be approxi-
mated as

b~ l !5H 0.43 lnN

l
if l &L~N!,

'0, otherwise.

~14!
02610
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From the inset of Fig. 2, it is also apparent that the cut
L(N) is a little over the value of lnN, by a factor of about
1.3. On the other hand, the drop ofb( l ) at L(N) is measured
to be either an exponential or a power law with a very lar
exponent. The mean-field prediction for the maximum of t
shortest path length,L(N), can be obtained by equatin
n(L)51 in Eq.~6! and using the Gaussian approximation
Eq. ~7!. The solution up to first order in lnN is that L(N)
'@(11A2/2)# ln N, which again is in reasonable agreeme
with the mean-field argument.

The derived quantitiesn( l )/N and the node-to-node dis
tance distribution is shown in Fig. 3 for two distinct case

~1! The root-to-node and node-to-node shortest path
tribution is measured in an ensemble of random BA tre
using simulations. Instead of every possible pair, the no
to-node distances are measured only between a large b
nite number of randomly selected vertex pairs, for practi
reasons.

~2! Both distribution functions are estimated by utilizin
the mean-field tree mapping, using the asymptotic form
Eq. ~14! for b( l ) with a cutoff atL51.2 lnN.

It is to be seen that a very good correspondence is fo
between the root-node distribution functions, but the ove
two-point PDF’s are sensibly close as well.

While it has been relatively easy to derive analytical
sults for the root-node distances in the mean-field trees,
~13! and the quantities it is constructed of turn out to be t
complex to handle without numerics. The formulas~11!–
~13! above are used to calculate the approximate value
the node-to-node path length distribution in the mean-fi
trees using the expression of Eq.~14! instead of the analyti-
cal form of Eq.~5!, so as to better represent the random B

FIG. 2. The average number of branches per node normal
with the logarithm of the system size, represented vs the mini
distance of the nodes from the root with maximum connectivity
the BA model. A power-law fit has been performed in a windo
indicated by the heavy line, givingb( l )/ ln N.0.43l 20.9995. The ex-
ponent is very close to21. The inset showsb( l ) plotted against the
normalized minimal distance. The systems range from 103 to 106

nodes in size with logarithmic increments. The number of iteratio
for the systems go from 105 to 100 depending on the sizeN.
1-4
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trees. It is reassuring that the generic form of the node
node distance PDF also follows a (C8/x)x function, only
with a differentC8 constant from that ofC for the root-node
distances@Eqs.~6! and ~7!#; see Fig. 3. The diameter of th
trees relative to the logarithm of the system size can be s
on Fig. 4.^ l &' ln N, or, in other words, twice the mean o
root-to-node distances. This is somewhat expected as
main contribution to the node-to-node paths arises fr
passing through the root, for large graphs. It leads to
convolution-type distribution~from the two ‘‘legs’’!. It can
easily be seen that the diameter cannot exceed twice
depth of the tree, which gives rise to a logarithmic growth
any case.

V. THE ‘‘LOAD’’ ON TREES

On a hierarchical structure the total number of minimu
paths going through a node~the ‘‘load’’ ! can be divided into
two contributions. First, those paths that connect node
separate sub-branches of the node to each other, and, se
those connecting the nodes belonging to the branches to
rest of the tree. Calld( l ) the number of the descendants o
node on levell. In other words,d( l ) is the size of the subtre
for the node. Then the load can be written simply as

L~ l !5S b~ l !

2 D Fd~ l !

b~ l !G
2

1d~ l !@N2d~ l !#, ~15!

where the last term counts the connections towards the
For the particular example we are concerned with, it

easy to see that the latter term dominates@N@d( l )# and,
moreover, that a good approximation is given by just sim

FIG. 3. Root-to-node~left! and node-to-node~right! distance
distributions with circles~BA model! and their predicted value
with squares. The prediction is based on Eqs.~11!–~13!. Trees of
106 nodes are measured and averaged over 100 realizations
dashed lines show the least-square fits with the function@C/( l
21)# l 21 to the measured data points. The constant for root-to-n
distances isCr515.7 and for node-to-node distancesCn533.2. Cr

is in a very good correspondence with the analytical value ofCr

50.43e ln N516.2 andCn'2Cr .
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L( l )'d( l )N. Thus one may investigate the dependence
the load on the level~or depth! of the tree,l. For d( l ) in the
mean-field picture one has that

d~ l !5

(
i 5 l 11

L

n~ i !

n~ l !
, ~16!

and for the layer immediately below

d~ l 11!5

(
i 5 l 12

L

n~ i !

n~ l 11!
5

d~ l !n~ l !2n~ l 11!

n~ l 11!

5
d~ l !

b~ l !
21'

d~ l !

b~ l !
, ~17!

where we also used the recursion relation forn( l 11). Fi-
nally, the load changes for the layer underneath as

L~ l 11!5d~ l 11!N5
d~ l !

b~ l !
N5

L~ l !

b~ l !
. ~18!

Since the loadL( l ) is the same for each of the nodes on
particular level l, the distance-load distribution is directl
given by the normalizedn-L function, thus hiding the im-
plicit dependence onl. Considering that

L~ l 11!5
L~ l !

b~ l !
,

n~ l 11!5n~ l !b~ l !, ~19!

L( l 11)n( l 11)5L( l )n( l )5const, and therefore

he

e

FIG. 4. The diameter and mean depth of networks of differ
sizes, divided by the logarithm of their size. Circles represent
mean of node-to-node distances, while squares represent the
root-to-node distances. Both are apparently proportional to lnN,
and the prefactors of;0.5 and;1 are in very good agreement wit
their respective analytical values.
1-5
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n5
const

L
. ~20!

We then expect to see that the load is inversely prop
tional to the number of nodes on the levels, which is inde
the case according to Fig. 5. The same result holds for
mal Cayley trees from Eq.~15!.

Note that we have to use mean-field trees which wo
correspond to random networks with a large number
nodes so that the number of levels is of the order of ten.
the load distribution we consider only levels for whichb( l )
>1 because otherwise subtrees do not exist in the ave
sense. It is surprising that the load distribution exponent d
not depend on the actual form ofb( l ), being universally
21 @Eq. ~19!#. Indeed, the exponent of the distance-loa
PDF is independent of the choice of the node that all
distances are taken relative to.

Another common way of defining the importance of t
nodes in terms of shortest paths passing through them is
one called betweenness, favorable for its algorithmic fe
bility and simplicity. Newman presents a breadth first sea
algorithm for efficient calculation of the betweenness
nodes on random graphs@21#. The only notable difference to
Eq. ~15! comes from the fact that the betweenness also
counts for paths that originate from the nodes themsel
which nevertheless amounts only to a constant system s

We will calculate the betweenness on the trees, now
cusing on the probability distribution of the load. An estim
tion can be given for a node by considering the contributio
to it, and by separating the network to a descendants
with d nodes in the branches and all the rest withN212d
nodes. The node being the source, we haveN shortest paths

FIG. 5. Load distribution for mean-field trees modeling BA ne
works. The probabilityP is proportional ton, the number of nodes
on the levels of the tree. The load on the root has not been sho
since it does not average. The inset shows the load distribution
a usual Cayley tree with a coordination numberz52. The bold
lines indicate power-law fits, which give exponents of20.99 and
21 for the BA and the Cayley trees, respectively. The mean-fi
tree is a mapping of a random BA tree with 1010 nodes.
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to any other node; if the source is among the descendants
have d(N212d11) ones going through; if the source
any other node from the network, we have (N212d)(d
11). A fourth contribution, coming from paths passin
through the node but having both ends in the descendant
has been neglected. They add up to an estimated betw
nessK of

K~d!'2N2112~N21!d22d2. ~21!

Here it is to be seen that for smalld’s the linear term domi-
nates, just as in our previous load calculation; Fig. 6 justifi
our estimations.

The betweenness probability distributionP(K) taken over
all nodes in the network can then be concluded to asymp
cally follow a power-law decay with a universal exponent
22. This is sinceK is linear in the number of descendantsd
and, moreover, that the PDF ofd scales universally with an
exponent of22 for supercritical trees@30#. Strictly speak-
ing, the conclusions here are only true for the supercriti
part of the tree, i.e., whereb( l ).1. The subcritical leaves o
the tree have an increasingly smaller number of descenda
though, which drops exponentially with each new layer, a
it can be verified that the descendant PDF decay expone
indeed above 2 if only this part of the tree is consider
Nevertheless, Fig. 7 shows that both the descendant PDF
the load PDF are accurately described by inverse squ
functions. A scaling of the load distribution has been expe
mentally found on other scale-free networks as well@20#,
only with a slightly different universal exponent of about 2.

A further, practically more far-reaching observation is th
the average betweenness as measured as a function o
locally known node degree grows as a power law of
degree with an exponent of about 1.8~Fig. 8!. A mean-field
approach can be used to estimate the exponent, though,
consider that the preferential attachment principle for la

ed
or

d

FIG. 6. Betweenness as a function of the descendants for e
node in the network. Trees of size 104 are taken with 100 realiza
tions. The root which descendants are defined down from is alw
the initial node. The prediction of Eq.~21! is represented by the
solid line.
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SHORTEST PATHS AND LOAD SCALING IN SCALE- . . . PHYSICAL REVIEW E 66, 026101 ~2002!
degrees gives rise to a descendant-degree scalingd
;k1/b (b51/2), which is the inverted relation for the tim
evolution of the degree of a parent node@9#. In this particular
case, time is measured as the size of the node’s subtre
substitution of the latter into the linear load equation wou
suggest an exponent of 2; the deviation from it may co
from the rather restricted range of the degree that the r
tively small system sizes allow.

VI. CONCLUSIONS

In this paper, we have mapped scale-free Baraba´si-Albert
trees to a deterministic model of a rooted tree with a unifo
branching process on each layer of the tree. This idea
sembles studies on the Internet structure@29# and the struc-
ture of branched cracks, where an inverse relation of
branching to distance has been observed@31#.

Simulations show that the distribution of the number
branches on one particular layer of the tree follows a pow
law function, but it turns out to be a good approximation
describe the branching only by its mean,b( l ). In the simple
case of BA trees it can be shown by means of this mapp
that the diameter of the networks is bounded by the lo

FIG. 7. Betweenness PDF for a system of 104 nodes. The expo-
nent of the power law shown is21.99. The inset displays the loga
rithmically binned PDF of the descendants for systems with6

nodes. Its power-law exponent is21.99 as well.
in
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rithm of the network size and the asymptotic form of t
distance distribution functions follows immediately. In oth
words, we can examine the slow convergence of this fu
tion to the limiting Gaussian form for infinite system size
Given an effective description in terms of a tree plus
branching process, further information can be found, e
one may consider the scaling of the number of shorte
distance paths~load or betweenness!. Nonuniform critical
trees could perhaps be constructed in a self-organized f
ion, as is possible for the statistically uniform case@32#.

One should note the close relation of the Cayley repres
tation to minimal spanning trees~MST! on scale-free~ran-
dom! networks; for them51 networks these two coincide
This makes it an interesting prospect to study the load
distance properties of MST’s in other scale-free networks
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FIG. 8. Average betweenness for nodes with a particular deg
taken over 100 realizations of networks with 104 nodes. The fit of a
power law indicates an exponent of about 1.78. The inset shows
average number of descendants vs the degree for systems wit6

nodes, for which a power-law fit givesd(k);k1.95.
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